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LIMITING SPECTRAL DISTRIBUTION FOR A CLASS OF RANDOM MATRICES

Y. Q. Yin

ABSTRACT

Let X= {X i, j =1, 2 ...} be an infinite dimensional random
ij

matrix, T pbe a p x p nonnegative definite random matrix independent of
pk

X. for p= 1, 2,......Suppose I tr T. a.s. as p -~for k = 1, 2,...,
p p H

and I H- 2k =. Then the spectral distribution of

A =-IX XTT
p n pp p

where Xp = (X ij i = 1,...,p; j = 1,...,n], tends to a nonrandom. limit

distribution as p - 00, n -+ oo but p/n 4-y > 0, under the mild conditions

that X s are i.i.d. and EX 2 < .



,*. . . . . .!. ... . . I - ,

1. INTRODUCTION

The spectra for random matrices of the form n X XT are important
n pp p

in many fields. Many results are available for the special case where

T - I = identity, (e.g., see Grenander-Silverstein (1977), Wachter
p p

(1978), Jonsson (1983), and Yin and Krishnaiah (1983)).

" In Yin and Krishnaiah (1984), the case when T is an arbitrary

positive definite matrix was investigated for the first time. In that

paper, it was assumed that the ent~es of Xp = [x i : i -

j = 1,...,n] are i.i.d. and normal. A new combinatorial technique was

developed in-that paper to prove the existence of 0h-e limiting spectral

distribution.

1he-eabeve work can be generalized in two directions. First, we can

generalize to the case when X has isotropic columns. This work was done

in Yin and Krishnaiah (1983) and Bai, Yin, and Krishnaiah (1984). In the

second direction, we can prove the result by assuming that X has i.i.d.
77,,

entries with minimum moment requirements. --he--presee wr-k is devoted

to this goal. In this paper, we have succeeded to prove the existence

of limiting spectral distribution by assuming only that the second

moment exists. The keys to reach this goal are (1) truncation technique

and (2) sophisticated combinatorial techniques. The two-stage truncation

method works in proving the main result. To prove the main result, we

have to generalize the notion of Q-graph to a new kind of graphs -

M-graphs. Some properties of M-graphs are developed here.

In this paper, we have succeeded to prove the existence of the

limiting spectral distribution in the sense of a.s. ' convergence.

-.- w - -. .. ."." . "........".- .•' "- -"'" " - ". "' - ." •.. " .".-. ,f;i ' ' .' .' " : " ''-'r'''','l
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2. PRELIMINARIES

Let A be a p x p matrix with p real eigenvalues Z < Z2-Z

We definea distribution function by

A (x) _

where f'..~ denotes the number of elements in the set {...In the

sequel, FA(x) will be referred to as the spectral distribution of the

matrix A.

In this paper, we are interested in proving the convergence of the
A

spectral distributions {F P(-)} ef a sequence {Ap} of random matrices to

a nonrandom distribution F(-). Here A is of the form
p

A X -X'T
p n pp p

and is defined on a common probability space (2, F,P). The definitions

of X and T and basic hypothesis are given below.
P p

(A) X = fX i, J = 1, 2,...} is an infinite random matrix of
ii

i.i.d. entries. EX 2 < oo. X = [Xi. 1 < i < p; I < j < n]in]

is a submatrix of X; here n = n(p) -o and p/n - y for some

finite number y > 0.

(B) For each integer p > 1, T = tj 1 < i, j < p] is a p x p

nonnegative definite random matrix and T is independent of
pI. X. Here t t (p) may depend on p.

;2 (C) There exists a sequence (H1, H2,...) of positive numbers such

that

Hk +-, and (2.1)

(D tr Tk -Hkas p-)00, inpr., for anyk> 1, or (2.2)
1 p P

(D tr Hk as p 4 , a.s., for any k > 1. (2.3)
. .2 p P k

r : .. . . . . .. ............... ....... ... ........ ..
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Theorem 2.1 Suppose the conditions (A), (B), (C), (DI) (or (D2))are
1

true. Then the spectral distributions of A =-I X X'T converge to a
p n ppp

nonrandom di-stribution function in pr. (a.s.).

Remark- According to the Strong Representation Theorem (Bai-Liang

(1984)), if (DI) holds, we can reconstruct a sequence of random matrices

{T } such that
p

(1) T and T have a common distribution, for each p.
p p
trT - Hk, a.s. for each k, asp .(2) r - k s.freckap

(3) {Xij, i, j = 1, 2,...} is independent of Tp, for each p.

Thus, to prove Theorem 2.1, we need only to prove the a.s. part under

the conditions (A), (3), (C), and (D2).

S .2
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3. SOME RESULTS IN GRAPH THEORY

At first, we generalize the notion of Q-graph introduced in

Yin and Krishnaiah (1984).

Let V and E be two finite sets, called the vertex set and edge set,

respectively. The numbers of elements of V and E are denoted by v and k,

respectively. A multigraph is a single-valued mapping F : E - V x V.

The multigraph will be denoted by (V,E,) or simply by 1.

If e E E, r(e) = (Bi, B2). B1 e V, B2 E V, we say that B and B2

are the ends of e. We do not distinguish (BI, B2) and (B2, B1 ). Note

that for two vertices BI, B2 in V, there may be several edges e in E such

that r(e) = (B1 , B2). Given B V, let nI be the number of edges with

different ends and one of the ends is B and let n2 be the number of edges

whose ends both are B. Then the number nI + 2n is called the degree of
1 2

B and it is denoted by deg(B).

Definition A multigraph (V,E,F) is calledan M-graph, if

(1) for each B E V, deg (B) > 2,

(2) there is a partition W = {C19...,C w} of the vertex set V,

the elements of W are called classes, such that

(3) for each class, the sum of degrees of vertices in it is even, and

(4) r is W-connected.

In condition (4), "W-connectedness" is defined as follows. For each

pair of classes C and Cb, there are classes Ca - Ca0 ' C, Ca2 '''Cad = Cb

such that C and C (i = 0, 1,...,d - 1) are directly connected, i.e.[ ai  ai+ 1

there is an edge e e E such that one end of e is in Ca. and the other in Cai+l.

An M-graph is denoted by (V,E,F,W), or simply by (1,W), or more

simply by r if there is no confusion. The number of classes in W will

be denoted by w.

IL.
. .-',~- S S
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In an M-graph (V,E,I,W), we denote by V the number of vertices with

degree i. Evidently, v1 = 0 and

v1 + v2 +.+V 2k = v, (3.1)

v I + 2v2 +.'+ 2kv2k = 2k. (3.2)

Recall that v and k are the cardinal numbersof V and E, respectively.

A sequence of vertices {B B B } is called a chain if any
b' b 2 9..' b

c

two neighboring vertices Bbi Bb (i 1 2,...,c ) are two ends
:i. i+l

of an edge and Bb ... Bb  are of degree 2.
2 bc-i

A chain (B l...,BbI is called singular, if degBl > 2 and degB > 2.b 1 isb b -.

1 c -1I

A chain B , B B,...,B is called a free cycle if B - B andbi b 9-9b b b1 c c
degBb = 2, too. A one-vertex free cycle is called a loop. If the ends

1

of an edge belong to a chain, we say that this edge is an edge of the

chain.

Lemma 3.1 In an M-graph (F,W), the number of singular chains equals

(k - v 2 ).

Proof Obvious.

Lemma 3.2 In an M-graph (r,W), if each vertex has degree 2, then F

is a collection of free cycles, and the number of free cycles f < k - w + 1.

Proof For a proof, see Yin and Krishnaiah (1984).

Lemma 3.3 In an M-graph (I,W), if v2 < k, then

f < -(k + v2) - w.

Recall that f, w and v2 are the numbers of free cycles, classes and vertices

of degree 2, respectively.

Proof We apply induction on f.

Suppose f =0 . Let m be the number of classes which contain only one

vertex with degree 2 and no other vertex. Since is an M-graph, for

.- -.. -'6 2% - .- .. . . .. m mmii mi m laIa i "i I 
'

i : I ' i'" "- 
Ile
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each B F V, degB > 2, by definition condition (3) and (3.2), we have

2m + 4(w - m) < 2k.

Note m < v 2 , we &at-

w < -(k + v2)

i.e.

0 = f < l(k + v2) - w.

Suppose there are f + I free cycles in our graph. Let Z be a free

cycle with its vertex set V and edge set EZ, and let WZ be the set of

all those classes in W which contain vertices of Z only.

Now delete Z from our M-graph. Consider the residue graph with

its vertex set V' = V\Vz, edge set E' E\E Z , F' = = the restrictionof onE' ' E V' V' 'r' PIE

of F on V, T':E'- V x V. Let W'= (C V C s W\W . Thus, W'

is a partition of V' into disjoint classes. Since v2 < k, i.e. there is

at least one vertex in V whose degree is greater than two, so when we

delete Z, this vertex is not deleted, hence V', E' and W' are not empty.

*'-[ The new graph (V',E',P') is not necessarily W'-connected. But W' can

be split into disjoint subsets : W W' say, such that if V! is the

set of vertices of Vt which belong to some class of W', E! = {e E E' : F(e) C V'}

r' - '' then , W ) are M-graphs, and classes from different

Wi are not directly connected through edges in E'. Since v2 < k, there is

at least one graph (Vi, E, with v2i E where vi is the

number of vertices with degree 2 of the graph F'. Without loss of gener-
2.

ality, we assume that

"E11 > v ' , for i- 1, 2,...,c, c > 1,:-:..2

" .%2
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and

IE!! v', for i c + 1,...,d.

By induction hypothesis, if f. is the number of free cycles of F',

f< +v') - 1W', i = 1, 2,...,c,
i - 2i 21

and by Lemma 3.2,

fi < IEiI- IW! + 1 = +(!E!I + vi) - W!J + 1, i =c + 1,...,d.

Summing up with respect to i, we get

1w'! < I(IE'J + v') - f + (d - c)

here v' is the number of vertices with degree 2 in V. We show that
2

WzJ < IEz- d. In fact,

Wz = {CE W C\V z  } -W*\W**

where

W*- {c E W C V }

w** { C v W C C v' V cn}.

But, classes are disjoint and nonempty, so
.Iw*1 < 1VzJ < Jmzl.

On the other hand, for each i 1,...,d, there is a class C E W such that

UC contains a vertex of V! and a vertex in VZ. In fact, given any class
2.'

C' of W with C'0 V1 4, let CO be an arbitrary class of Wz . Since the

whole graph is class-connected, there are classes CO  C ... C = C Of

W such that C_ # C. are directly connected for j 1,...,g. Let C. be
J-1  JJ

the first class in the above sequence which contains a vertex of V.

A.t1

...............................................................
L'

•
'," " o -'. ,' . - -"- .- -" . ... - " .

o .
• - .. -. , .. -. .. . ' . -. *.- , . . " . .. . . .- " ' "- " "-, .4 .
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Suppose e E E connects C and C. i.e. 7(e) n C. # i and'(e)f C #*" j-1 J"

If i(e)fl C. is a vertex of V', r(e) n C must also be a vertex of VIP
j 1' j-i 1

contradicting the minimality of j. But C. cannot contain any vertex of V',
J

for Z #1L7 so F(e)() C. is a vertex of V Thus, C. is a class with the
J J

required property : it contains a vertex of Vz and a vertex of V'. But
1

W1, i = 1,...,d, are disjoint, so

!W**l > d.

Therefore

lWzl < lEZI - d.

Also, it is evident that

El = IE'! + lEzi , w lw'l + IWzl,

and

v2  V + IEz.

Therefore,

w < JW'J + JEZi d d<(E'l + v ) f + (d c) + JEZI d

(WE' + v2z- f -(
1<=-1(kE + v 2 -f-
2 2

<lk+ v2) - f - 1,

which completes the proof of Lemma 3.3 by induction.

The following lemmas are useful in the proof of Theorem 2.1. Some

of them are well-known and are quoted below without proof except Lemma 3.4.

Lemma 3.4 If in the sum

S = f(a )...f c(ac)gl(bb2)... gd(b2d1, b 2 d)

each index occurs at least two times, b2ii b2i, i = 1, 2,...,d and the

indices run over fl, 2,... ,p}, then

" . .. ".
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21 2 2"
, < f (i). f 2 (i) gl(iJ) gd(i,

i,j= i,j I

Here indices a b means that a and b always take the same value.

Proof We will prove this lemma by induction on c + d and by using

Schwartz' s Inequality.

Now, let c + d > 2, we shall discuss the following two cases.

Case I c =0. We have

2 b 2 b2 ) ( g2 b4) ... gd(b 2 d 1  , b2d))

12 2 /

If for some i > 1, {b.2il, bi} 2 {bl b } then gi can be taken out of the

bracket. If for some i > 1, {b2i-l, b 2 i} n {bI, b2 } has only one element,

for fixedb I and b2, g, can be regarded as a new f function. In any case,

the product under the inner summation has less factors than that in S

and has the required form. By induction we can get the conclusion of

the lemma.

Case 2 c > 1. We have
pP / 2
2(a2 )<lf= 2 af(a2 ) .. ff(a )gl(bl, b2 (b b~d
1 1) 1  b fd ) ) 2'". 2d-l "

al=l a1I

If for some i > 1, ai a1 , then f.(ai) can be taken out of the bracket.
_ b 1, or ixe a1 th + ll

If for some j > 1, L 2, for fixed al,the 2 th g function can

be regarded as a new f function. In any case, the product under the

inner summation has less factors than that in S and has the required fdrm.

By induction, we have proved the lemma.

Lemma 3.5 (Ky Fan) Let A and B be two p x n matrices and F, G be

the spectral distributions of AA' and BB', respectively. Then

~~~~~~~~~~~~~~.....................-.??.,.-'."..............•... ... ...... ..--- , -.---.-...-.... -. ,-... . .
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FG = sup-F(x) G (x)-I < rank(A- B).
-p

Lemma 3.6 (J.von Neumann(1937)) Let A and B be two p x n matrices and

{X j}k.i } be the eigenvalues of AA' and BB' respectively. Then

p

ItrAB'I < I__ i

Here X > X > ' ' '>X > 0 and k, > k >...>k

1- 2- -p . 2 p

From Lemma 3.6 it follows immediately that

p P p

z k + '
:i-1 i= i-I

< trAA' + trBB' - 2trAB' = tr(A- B)(A- B)'. (3.3)

Definition (Dudley). Let G and F be two probability measures.

Define D-metric of G and F to be

D(F.G) = 1 -fidF f ia fl .

where {fi} is a sequence of functions which is uniformly dense in the set

of functions from Rt o [0,1] satisfying Jf(x) - f(y)l < Ix - yl for any

x and y. It is well known that the topology deduced by D-metric in the

space of all one-dimensional distributions is the same topology of weak

convergence, (see Dudley (1966)).

If F and G are spectral distributions of AA' and BB' respectively,

then from (3.3) we get

P p p

D(F.G) < ix~ k) 2
. +-

< 2 ' '

tr (AA' + BB') tr(A - B)(A - B)'. (3.4)

p

Lemma 3.7 (Hoeffding (1963)). Let n be a binomial random variable

with parameters n and n. Then for any e > 0,

N- - . -. . . .N.
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P(l In- r > )'< 2exp{-n E2 /(2n + E)}.

Lemma 3.8 Let B = {B1 ,...,B v } be a partition of the set {1, 2,...,2,}.

Then consider the sum

i.S t [ t i t  .. * t i i I

where ill i run over the set {I, 2,...,p} but subject to the condi-

tion that if a, a' belong to the same set Bb for some b, then i a i a

Consider a multigraph (V, E, r), where V = B, E = {e ... ,e z}, and

F(e i) = {B(2i), B(2i + 1)1 (B(a) I Bb iff a E Bb )  If (V E r) is an

M-graph with some partition W {C .. ,C of vertices, such that deg(B i) > 2

for at least one i, then

l' v.Z-w
S = 0(p ) a.s..

Proof Summing up with respect to all free indices (i.e. indices which

occur just twice in t t t or equally, those indices i for
i 2 1 3 o 45 2..1iI  a'

which a E Bb for some b with IBb = 2). Then we have

nI  nf (aI) (ar) (b s(b)
S =tr Tp ...tr T f t .. t .1 t

p p mlm I  m m ""h g

.,. rr l ss

Here nl,...nf are the lengths of all the f free cycles, al,...,a r are the

lengths of singular chains the two ends of which are identical, and bI .... bs

are the lengths of the singular chains their ends are not equal,

g, t hl,...,g hs, and Ta = (t ). By definition of a singular chain,S s p ij
each of the indices ml,...,nr, g1 ... ,gs, h,...,h occurs at least three

times. By Lemma 3.4,

n 1 2 nf 2  2aI  2a 2bI  2b
$' < (tr T .. (tr T ) tr T ...tr T r tr T ... tr T s

p p P p p p

Since tr Tc = O(p) for any c > 1,
p

O~pf+(1/2)(r+s ,  a.s..

S..- .. - .... ......
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By Lemma 3.3, and Lemma .3.1, if vis the number of Bb with IBb 2,

r + s - v 2)

Therefore,

=O(p ).W
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4. PROOF OF THEOREM 2.1

T1/2 '  A 1

Let Vp_ TP F = F P, A - X X'T . Define X.. = XiilI<in]
and p p p nppp p

an X .=X.; i l...,p; j = 1,...,n]. Let F (x) be the spectral
p - .-i~ p

A ^

distribution of- X X'T . According to Ky Fan Inequality, we haven ppp

A 1

JIF - F 11< -Pl rank[V (X - Xp)] < - rank(X - Xp)
p p Pp p p -p p p

<-- P If , [(ij) : Ix I >In; 1i< p, j < nn

2 'j - pj< p

A
where means "denoted by." Write

r = P(IXI > D n

From Hoeffding's Inequality, we get for p large enough

P(JI F - F ii > E) < P >

< 2exp Jnj 2 ( 2n +

n)

< 2exp{-p E/2}, for V E > 0.

Thus,

p- Fp1  
- 0 a.s.. (4.2)

Let

ij =iij E ij

and X = (Xij) -X - EX . Denote by F the spectral distribution of
P ij P P P-

I X X'T . Again using Ky Fan's Inequality, we getn ppp

F F F < 1 . (4.3)
p p -p

Therefore, to prove {F p} has a limiting spectral distribution, we

need only to prove that {Fp } has a limiting spectral distribution.

p-'.
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E Now define

and let _

=(Xlj), A i 7'pTp

and Fbe the spectral distribution of A. From (3.4) we get

(F , F )< 2 A A (4.4)
p p 1 12

where

Al~iZZ~' v. + (kik)]

i-i jlkl ik(Xj -K N)

We shall prove

A 2H1,H a.s. (4.5)

A 2 0O a.s.. (4.6)

If E T(** E(... IT)*stands for the conditional expectation given

T ={T 1 9 T,..} by independence and E(XK ~ 0, we have

ETA2 - f~(Xj - Xj

1 -2
=-tr T E (X 11 -X ).(4.7)

Recalling the definitions of X11 and X11, we have

E Tcan be defined precisely as follows. Given Borel function f(T,X), if

vi is the probability distribution of X on the value space IR of X, then

ETf f f(T,X),W(dX).



I"7
115

E(XII X1 1) = var(Xll1[IXII>
21logn ]

-2 < 111[(X N'dogn]

I< 2EX oIn] + 2(EXI)2P(IX 11  
>  log n)= x11 -I..LOfl

-2

< 2EX 2 1I l + 2EX P(XiI > log n)
= 11 (iX .. I-ogn] 11 -1 2

112

0 . (p 00). (4.8)

From (4.7) and (4.8), we have

ET2 0 (p o), for almost all T. (4.9)

Also, we have

ET(A 2 _ ETA2 ) 2 < I ( )2 - _ 2E X 4
- n = ik2 T 2I -X

lk p
+4 1 E(X 11

1<2

24 2 E )2>21 tr T E( X + tr T P (X X)
npIp pp 1\1

1 E(XII -X )4 (H + 0(l)) + 0(p- 2 ) , for almost all T.

Recalling the definitions of X and X and y > 0, we can prove
11 n

that

-4 4 2 4E(X - < 16EX1
= (16) EXiI [ X 1< ].

12

Hence

IoET(A 2 - ET A2 )2 < , for almost all T. (4.10)

p=1
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410

Here we have used the fact that EXiII[x <- .J, < I, for any
p=1 p i

K > 0 fixed.

(4.9) axid (4.10) ensure that

A2 - 0 for almost all X, for almost all T. (4.11)

By Fubini's Theorem, we have proved (4.6). By the same approach, we can prove

(4.5). Hence, from (4.4) it follows that

D 2(F p , i) - 0 a.s.. (4.12)
L-J p

-.. " From (4.2), (4.3), (4.12), to prove {F } has a limit spectral distri-
p

bution, we need only to prove {f } has a limit spectral distribution. ForP

simplicity, we drop the symbols imposed on Xij and Fp, and we assume that

(1) lx Ii< - log n

(2) EX j= 0 (4.13)

(3) EX 2 < 1 and EX 2  4 1 (p -*oo).
ii"- i

Note that X depends on p.

Now, we shall first prove that

% : k- k!nn2.wWEq x XdF (x) -- :ET tr(X X'T~) *

kk n n n
Ek -. n ! n !w H1 H2 ...H

p -* as p - , for almost all T, (4.14)

A-' where the inner summation is carried out over all nonnegative integer

solutions to the equations

n1 + n2+..-+n k - w + 1,

nI + 2n2+-..+wn - k. (4.15)

2 w ) :
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For a given integer k > 1, let

R = r dF P(x) - t r(Ak) = tr(X X'Tp)k
p P pn k pp

--- xil~ jx.x .. x. x. t .t . .. t
pn j l X332Xi432 2k-I3k '2kjk 2 3 4 5 *2k I*

Here the summation is taken in such a way that il, i2,9...i 2k run over the

set (I, 2,...,p} and jl,...,3 k run over the set i, 2,...,n}.

We have

I k

ET Rp k i i t 11 (x ji
pn 2 3 4 5 2ki1 q=l 2q-lJq 2q q

1 w= k X t iti.***..t R E R (X.i r Xi r)

pn A r,...,r (i) 2345 2kil I- qEA 2q-1 V 2q V

Here

E means the summation over all partitions A - {A1 ,... ,Aw  of

A
the set Il,...,k},

r r means the summation for the indices rl,...,rw running over

"I, 2,...,n} but being kept distinct from each other;

means the summation for iI, i2,...,i 2k running over the set

(-) {I, 2,. .. ,p}.

But, by i.i.d., we have

ETRp  1 k I n(n 1)...(n -*w + 1) t tit
pn A (i) 2 3 4 5 2k 1

w
n ETn (X x" Z (X 1X 1)

i a,- qeAV 2q-l' 2,

Now let W be the partition of {1, 2,...,2k} induced by A, i.e.

W {A*, A* ,...,A*}, where A* - U {2s - 1, 2s}.1 " s A i,
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Let V = {BI,...,B } be any partition of f1, 2,...,2k}. We say that

V is a refinement of W, if each Bb is a subset of some A*. We have_ a

E R = JXn(n- 1) .(n - w+1) t t ...t
Tp pn A V<W (i)1VW 2 3 4 5 i2kil

w
II I E H x i

v=1 B~A sEB s: b

Here

I is the summation for all partitions V of {1, 2,...,2k}which are
V< w

refinements of W;

means the summation for ii i "'l running over
(i) IV,W

the set {, 2,...,p} but subject to the condition that if b, b'

are in the same A* then ib  i <-> b, b' belong to the same
a b = b' = , eon otesm

V-class.
IBb[

Thus, E H x = Exll , and
sa SB b s

ETR p  w R(W,V)K(V),T A V<W pnk

where

(n), = n(n - 1)...(n - w + 1),

R(W,V) - ti213ti415""tikl

and
v IB

K(V) = nl Ex . (Note that K(V) 0 if IBbI = 1 for some b.)
b-II'>'- b=1

Let A = {A,...,A } be a partition of {1, 2,...,k}, W = {A*,...,A*}

where A* U {2c - 1, 2c}, a 1 l,...,w. Let V - {BB , . . . ,B } be anya" "

cEA
a

partition of {1, 2,...,2k} such that V < W and IBbI > 2 for all b. We

define a graph (E,V,rW) as follows. V is the vertex set, i.e. there are

- 4 4 -
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v vertices BI,...,Bv . The edge set E {e 1,...,e k l contains k edges.

The function F : E - V x V is defined by I(e) = {B(2c), B(2c + I}, where

B(a) =B iff a C Bb . But 2k + 1 is regarded as 1.
b

It is easy to verify that f(V,W) is an M-graph, if two vertices are

defined to belong to the same class 1ff they are subsets of the same set A*.* a

By Lemma 3.8, it is easy to see that if Bbl > 2 for some b, then

R(W,V) = O(p k-W), so by the obvious inequality: K(V) = O(log 2kp),

(n) R(WV)K(V) = O(p-(k+l-W)pk-W(logp) 2k = o(i), a.s.
k '

pn

So, we consider only those V for which each IBbi = 2, and the number of

cycles of F(V,W) is just k - w + 1. Thus

ET~ p -- X(n)w
E R A= pn R(W,V)K(V) + 0(1), a~s.

Tp A, VWpnk

where i" means the summation over those V = {Bb : b = 1,...,v}, for which

"2 = k and f = k - w + 1.

By the same argument as in Yin and Krishnaiah (1984)

k kw k! n1 n nw
ETR E= Iw! H I H 2 .. .H for almost all T.

w=1 n 1+...+n =k-w+l

nl+2n 2 . . .+wn =k

And it is easy to verify that E -1/2 k s +0"

We will now prove that if R f xkdF(x), then
SET(R - ETRp) < c for almost all T.

We have

2 E2 1VarT (R ) ETR - ER 2 2k ti . t . .
p n T T 2 2kI 12k+2 2k+3 4k 2k+1

2kk 2kE 1(X i  x ) E R (X i  )E XR (X E
Eq=1  2q-ijqXi 2qjq q=1 2 q- 1jqXi 2 qq qk+l (Xi 2q-ljqXi 2qjq).

Here, iI,...,4k run over the set 0, 2,...,p} and j1' j2k run over the

4k
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set {1, 2,...,n}.

Let S = [1, 2,...,k}, S = {k + 1,...,2k}. If D is any set of

numbers, D* vill denote the set U {2x - 1, 2x}.
xED

We -hav-~

Var R = 2 kTp p n A V<A* r1,...,r w (i)IA*,V

.."t~3ti 4 4 5. t ki2l
,23 415 i2kilI 12k+2i2k+3 4k 2k+1

w
.(IE 11 X1  -r ITrEI

"awl qEA q a a= l[qEA*nS qra qlA*ns*Xiqra

S2 2k
p n A V<A* rI ,...,r (i)IA*,V

t t t t

ti2i3 "'t12k1 i2k+2 2k+3 i4ki2k+1

v IB ~v I IBbfSlS JBSI
(T Ex 1 l ]TIE Ex 11 b 2j1(b= 1b=1L J)

Here

means summation over all possible partitions A = {A1 ,...,Aw }
A of {1, 2,...,2k},

means summation over all possible partitions V of {I, 2,...,4k}
V< A*

which is a refinement of A* = {A*,...,A*}.
1 w

means the summation for rl,...,r running over the set {, 2,...,n},
r! ,...r ,r

but being kept different from each other;

means the summation for i
1
,...,i4k running over the set {, 2,...,p}

(i) A*,V
but if c,c' belong to the same class A* then i i ,iff c,c'

a c c

belong to a same class Bb.

So, if

.- I
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v I Bb I B ~ st JBb S*
K() M HEx IT Ex Ex

b=1 b 1 1

R-{A*,V) t t t tt
(i) IA*,V ~2 3 4 5* '2k1I2k+2 2k+3* 14k 2k+i1

(n)w n(n -1)...(n -w + 1),

then

V ar R L 2 R(A*,V)K(V).
T p AWA* k

We may suppose that

1. IB bl > 2 for all b,

2. at least for one b, IBbr) S*I-IBbn s*I # o.
For, otherwise K(V) = 0.

Now for each pair of partitions A = {A 1 ....,A I of (1, 2,. ..,2kl

and V = {B1 ,..,B}I of (1, 2,...,4k} such that V < A* {A*,...,A*}. We

construct a graph G(A*,V) as follows:

(1) the vertex set is V,

(2) there are 2k edges a1 '...,e 2k; E =e 1 i...,e 2k}

(3) r E -~ V x V is defined as follows:

r(e) f B(2), B(3)1, r(e 2) {B(4), B(5)},...,r(e k) {B(2k), B(1) }

r(ek+l) - {B(2k+2), B(2k + 3)}...,r(e 2k) f B(4k), B(2k + 1)1.

Here B(a) -B iff a e B
b b

(4) Classes are C = {B Bb C A*}, a 1,..w*a b b a

It is easy to verify that G(A*,V) is an M-graph. It is class-

connected owing to 2.

Now we show that R(A*,V) 0O,2-w

Case 1 there exists b such that IB b' > 2. Then by Lemma 3.8, we

2k-whave R(A*,V) O(p )
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-: Case 2 IB = 2 for all b. Consider the b, for which IB r S*!'IB C) S* .b b I, b

Such a vertex will be called mixed. It is evident that any class has even

number of mixed vertex.

Now our gaph._G(A*,B) is a Q-graph. We are going to show that it is

not maximal, i.e. the number of cycles < 2k - w.

Suppose it is maximal. Then, we know that any free cycle cannot meet

a class at more than one vertex.

Let B be a mixed vertex in the class C (
. Let Z be the free

1.ycle containing B(1) z (1 ) must contain another mixed vertex B

S C( ) . Suppose B ( I ) F class C( 2 ) .

C3)

()(2) (2) (2).
C contains another mixed vertex B .B~

2  belongs to a cycle Z

z( 2 ) oz has another mixed vertex B B class(3). B(2) (3)2) (3)

C 3  C(). C C has another mixed vertex B B ( 3 ) belongs to cycle
z (3). (3) z (2).

Because there are only finitely many cycles and classes. We may

suppose Z(l,...,z(a) are different and Z (a+1) But for maximal

Q-graph, such situation can't occur.

So G(A*,B) is not a maximal Q-graph and

R(A*,V) - O(p2k-w)
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Thus,

(n) 2k-w
Var TR p= 2 2k O(p K (V)

A V< A* p n

- ___2k

a.s.
2
p

and from this it is easy to deduce that

SE(R - ER )2< 00 for almost all T.
_p T p

So, the conclusion of Theorem 2.1 follows.
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